Code: 20BS1302

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

NUMERICAL METHODS AND COMPLEX VARIABLES (Common for ECE, EEE)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

									BL	СО	Max. Marks
UNIT-I											
1	a)	Using method of false position find a positive root of equation $x^3 - 2x + 0.5 = 0$.						L3	CO2	7 M	
	b)		imate <i>f</i>	(0.29).	0.24	0.26 1.6912	0.28	(x) and 0.30 1.7139	L4	CO4	7 M
OR											
2	a) Apply bisection method, find a real root of equation $e^x - x = 2$ lying between 1 and 1.4 correct to three decimal places.							CO2	7 M		
	b)	Find the value of $f(5)$ from the following data. Given $f(2) = 0.2107$, $f(4) = 0.2527$, f(7) = 0.3386, $f(8) = 0.3794$.						L4	CO4	7 M	

UNIT-II											
3	a)	Evaluate the first derivative at $x = -3$ from the following table.	L3	CO2	7 M						
	b)	Use suitable method for estimating $\int_0^{\frac{3\pi}{2}} xe^x \sin x dx \text{ by taking } n = 4.$	L4	CO4	7 M						
	OR										
4	of	ing Taylor's series method, compute the solution $\frac{dy}{dx} = x + y$, $y(0) = 1$ at the point $x = 0.2$ d 0.4 correct to three decimal places.	L4	CO4	14 M						
	UNIT-III										
5	a)	Show that the real and imaginary parts of $f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$ satisfies Cauchy-Reimann(C-R) equations at $z = 0$, but $f(z)$ is not analytic at the origin.	L4	CO5	7 M						
	b)	Let $f(z) = u + iv$ be an analytic function such that $u-v = (x-y)(x^2 + 4xy + y^2)$. Construct the function $f(z)$ in terms of z.	L3	CO3	7 M						

OR										
6	a)	Find an analytic function f(z), whose real part is $f(z) = \frac{\sin 2x}{\cosh 2y - \cos 2x}$	L4	CO5	7 M					
	b)	Find an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$	L3	CO3	7 M					
	UNIT-IV									
7	a)	Evaluate $\int_C \frac{z+1}{z^4 - 4z^3 + 4z^2} dz$ where <i>C</i> is the circle $ z-2-i =2$ using Cauchy's integral and derivatives formulas.	L4	CO5	7 M					
	b)	Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$.	L3	CO3	7 M					
		OR								
8	f(and Laurent's series expansion of $z = \frac{4-3z}{z(1-z)(2-z)}$ in the following regions $0 < z < 1$ ii) $1 < z < 2$ iii) $ z > 2$	L3	CO3	14 M					
	UNIT-V									
9		aluate $\int_C \frac{e^{2z}}{z^3(z-1)^2} dz$ where C is the circle $= 2$ using Cauchy residue theorem.	L3	CO3	14 M					

	OR							
10	a)	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a + b\cos\theta}, a > b > 0, \text{ using}$ the residue theorem.	L3	CO3	7 M			
	b)	Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$ using contour integration.	L4	CO5	7 M			